
SAND REPORT
SAND2006-xxx
Unlimited Release
Printed ??? 2005

An Overview of MOOCHO

The Multifunctional Object-Oriented
arCHitecture for Optimization

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2006-xxx
Unlimited Release
Printed ??? 2005

An Overview of MOOCHO

The Multifunctional Object-Oriented arCHitecture for
Optimization

Roscoe A. Bartlett
Department of Optimization and Uncertainty Estimation

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is a C++ Trili-
nos package of object-oriented software for solving equality and inequality constrained non-
linear programs (NLPs) using large-scale gradient-based optimization methods. The primary
focus of MOOCHO up to this point has been the development of active-set and interior-point
successive quadratic programming (SQP) methods. MOOCHO was initially developed (under
the name rSQP++) to support primarily reduced-space SQP (rSQP) but other related types of
optimization algorithms can also be developed. Using MOOCHO, it is possible to specialize all
of the linear-algebra computations and also modify many other parts of the algorithm externally
(without modifying default library source code). One of the most unique features of the MOO-
CHO framework is that it supports completely abstract linear algebra which allows sophisticated
implementations on parallel distributed-memory supercomputers but is not tied to any partic-
ular linear algebra library (although adapters to a few linear algebra libraries are available).
In addition, MOOCHO contains adapters to support massively parallel simulation-constrained
optimization through Thyra interfaces. Access to a great deal of linear solver technology in
Trilinos is available through the “Facade” classes in the Stramikimos package.

This document provides a high-level overview of MOOCHO that describes the motivation
for MOOCHO, the basic mathematical notation used in MOOCHO, the algorithms that MOO-
CHO implements, and what types of optimization problmes are appropriate to be solved by
MOOCHO. More detailed documentaion on how to install MOOCHO, how to define NLPs,
and how to run MOOCHO algorithms is provided in a companion document [???].

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgment

The authors would like to thank ...

The format of this report is based on information found in [?].

4

Contents

Figures

5

6

An Overview of MOOCHO

The Multifunctional Object-Oriented
arCHitecture for Optimization

1 Introduction

MOOCHO is an object-oriented C++ software package building gradient-based algorithms for
large-scale nonlinear programing. MOOCHO is designed to allow the incorporation of many dif-
ferent algorithms and to allow external configuration of specialized linear-algebra objects such as
vectors, matrices and linear solvers (i.e. through Thyra). Data-structure independence has been
recognized as an important feature missing in current optimization software [?].

While the MOOCHO framework can be used to implement many different types of optimiza-
tion methods (e.g. Generalized Reduced Gradient (GR) [???], Augmented Lagrangian (AL) [???],
Successive Quadratic Programming (SQP) [???] etc.) the main focus has been SQP methods. Suc-
cessive quadratic programming (SQP) related methods are attractive mainly because they generally
require the fewest number of function and gradient evaluations to solve a problem as compared to
other optimization methods [?]. Another attractive property of SQP methods is that they can be
adapted to effectively exploit the structure of the underlying NLP [?]. A variation of SQP, known
as reduced-space SQP (rSQP), works well for NLPs where there are few degrees of freedom (see
Section 2.1) and many constraints. Quasi-Newton methods for approximating the reduced Hessian
of the Lagrangian are also very efficient for NLPs with few degrees of freedom. Another advan-
tage of rSQP is that a decomposition for the equality constraints can be used which only requires
solves with a basis of the Jacobian of the constraints (see Section 2.3) and therefore can utilize very
specialized application-specific data structures and linear solvers. Therefore, rSQP methods can
be tailored to exploit the structure of simulation-constrained optimization problems and can show
excellent parallel algorithmic scalability.

There is a distiction to be made between a user of MOOCHO and a developer of MOOCHO,
though it may it be narrow one in some cases. Here we define a user as anyone who uses MOOCHO
to solve an optimization problem using a pre-existing MOOCHO algorithm. A MOOCHO user
can vary from someone who uses a predeveloped interface to a modeling environment like AMPL
[?] to someone who uses MOOCHO to solve a discrietized PDE-constrained optimization problem
on a massively parallel computer using specialized application-specific data structures and linear
solvers [?]. While the first type of user does not need to write any C++ code and does not even
need to know what C++ is, the latter type of sophisitcated user has to write a fair amount of C++
code. There are also many different types of use cases of MOOCHO that lie in between these two
extremes. This user’s guide seeks to address, at least to some degree, the needs of this entire range

7

of users. Because of this, there will be a fair amount of discussion of the object-oriented design of
the relavent parts of MOOCHO.

In the next section (Section 2), the basic mathematical structure of SQP methods is presented.
This presentation is intended to establish the nomenclature of MOOCHO for users and develop-
ers. This nomenclature is key to being able to understand and modify the MOOCHO algorithms.
Appendix?? contains a summary of this notation. The basic software design of MOOCHO that
both users and developers must understand is described in Section??. This is followed in Section
?? by a basic description of the linear algebra and NLP interfaces for MOOCHO. These interfaces
provide the foundation for allowing the types of specialized data structures and linear solvers that an
advanced user would use with MOOCHO. Section??discusses a software-based use of MOOCHO
for general NLPs where explicit gradient entries are computed. Apart from using a predeveloped
interface to MOOCHO (e.g. AMPL), this is the simplest use case for MOOCHO. This section in-
cludes a complete example NLP with numerious C++ code excerpts. This discussion is followed
up in Section?? by an example NLP that specializes all of the linear algebra and NLP interfaces,
uses application specific linear solvers, and runs on a distributed-memory parallel computer using
MPI. This example represents the most advanced use case for MOOCHO and provides the needed
foundation for even the most advanced interface to a sophisticated application. Section??describes
the algorithm configuration classes that are used to build MOOCHO algorithms and includes a fairly
detailed discussion of a default configuration called “MamaJama”. Details of the input and output
files for MOOCHO (for the “MamaJama” configuration and an example NLP) are discussed in Sec-
tion ??. This section describes the example printouts that are included in Appendix??. Finally,
Appendix??describes the installation for the base distribution of MOOCHO which is a first step to
using MOOCHO.

2 Mathematical Background

2.1 Nonlinear Program (NLP) Formulation

MOOCHO can be used to solve NLPs of the general form:

min f (x) (1)

s.t. c(x) = 0 (2)

xL ≤ x≤ xU (3)

where:

x,xL,xU ∈ X

8

f (x) : X → IR

c(x) : X → C
X ⊆ IR n

C ⊆ IR m.

Above, we have been very careful to define vector spaces for the relevant vectors and nonlinear
operators. In general, only vectors from the same vector space are compatible and can participate in
linear-algebra operations. Mathematically, the only requirement for the compatibility of real-valued
vector spaces should be that the dimensions match up and that the same inner products are used
[???]. However, having the same dimension and inner product will not always be sufficient to allow
the compatibility of vectors from different vector spaces in the implementation (e.g. coeffieients
of parallel vectors can have different distributions to processes). Vector spaces become important
later when the NLP interfaces and the implementation of MOOCHO is discussed in more detail in
Section??and in [?].

We assume thatf (x) andc j(x) for j = 1. . .m in (1)–(2) are nonlinear functions with at least
second-order continuous derivatives. The rSQP algorithms described later only require first-order
information (derivatives) forf (x) andc j(x). However, these first derivatives can be provided by
finite differences if missing. The simple bound inequality constraints in (3) may have lower bounds
equal to−∞ and/or upper bounds equal to+∞. The absences of some of these bounds can be
exploited by many of the algorithms.

It is very desirable for the functionsf (x) andc(x) to at least be defined (i.e. noNaNor Inf return
values) everywhere in the set defined by the relaxed variable boundsxL− δ ≤ x≤ xU + δ. Here,δ
(see the methodmax var bounds viol() in the Doxygen documentation for theNLP interface) is
a relaxation (i.e. wiggle room) that the user can set to allow the optimization algorithm to compute
f (x) andc(x) outside the strict variable boundsxL ≤ x≤ xU in order to compute finite differences
and the like. The SQP algorithms in MOOCHO will never evaluatef (x) andc(x) outside the above
relaxed variable bounds. This gives users a measure of control in how the optimization algorithms
interact with the NLP model.

The Lagrangian functionL(λ,νL,νU) and the Lagrange multipliers (λ, νL, νU) for this NLP are
defined by

L(x,λ,νL,νU) = f (x)+λTc(x)+νT
L (xL−x)+νT

U(x−xU) ∈ IR (4)

∇xL(x,λ,ν) = ∇ f (x)+∇c(x)λ+ν ∈ X (5)

∇2
xxL(x,λ) = ∇2 f (x)+

m

∑
j=1

λ(j)∇2c j(x) ∈ X |X (6)

where:

9

∇ f (x) : X → X
∇c(x) =

[
∇c1(x) ∇c2(x) . . . ∇cm(x)

]
: X → X |C

∇2 f (x) : X → X |X
∇2c j(x) : X → X |X , for j = 1. . .m

λ ∈ C
ν≡ νU −νL ∈ X .

Above, we use the notationλ(j) with the subscript in parentheses to denote the one-basedjth

component of the vectorλ and to differentiate this from a simple math accent. Also,∇c(x) : X →
X |C is used to denote a nonlinear operator (the gradient of the equality constraints∇c(x) in this

case) that maps from the vector spaceX to a linear-operator spaceX |C where the range and the

domain are the vector spacesX andC respectively. The returned objectA = ∇c ∈ X |C defines a

linear operator whereq = Ap maps vector fromp∈ C to q∈ X . The transposed objectAT defines

a linear operator whereq = AT p maps vector fromp∈ X to q∈ C .

Given the definition of the Lagrangian and its derivatives in (4)–(6), the first- and second-order

necessary KKT optimality conditions [?] for a solution(x∗,λ∗,ν∗L,ν∗U) to (1)–(3) are given in (7)–

(13). There are four different categories of optimality conditions: linear dependence of gradients (7),

feasibility (8)–(9), non-negativity of Lagrange multipliers for inequalities (10), complementarity

(11)–(12), and curvature (13).

∇xL(x∗,λ∗,ν∗) = ∇ f (x∗)+∇c(x∗)λ∗+ν∗ = 0 (7)

c(x∗) = 0 (8)

xL ≤ x∗ ≤ xU (9)

(νL)∗,(νU)∗ ≥ 0 (10)

(νL)∗(i)((xL)(i)− (x∗)(i)) = 0, for i = 1. . .n (11)

(νU)∗(i)((x
∗)(i)− (xU)(i)) = 0, for i = 1. . .n (12)

dT ∇2
xxL(x∗,λ∗)d≥ 0, for all feasible directionsd ∈ X . (13)

Sufficient conditions for optimality require that stronger assumptions be made about the NLP

(e.g. a constraint qualification onc(x) and perhaps conditions on third-order curvature in case

dT ∇2
xxL(x∗,λ∗)d = 0

10

in (13)).

To solve a NLP, an SQP algorithm must first be supplied an initial guess for the unknown

variablesx0 and in some cases also initial guesses for the Lagrange multipliersλ0 and ν0. The

optimization algorithms implemented in MOOCHO generally require thatx0 satisfy the variable

bounds in (3), and if not, then the elements ofx0 are forced in bounds.

2.2 Successive Quadratic Programming (SQP)

A popular class of methods for solving NLPs is successive quadratic programming (SQP) [?]. An

SQP method is equivalent, in many cases, to applying Newton’s method to solve the optimality

conditions represented by (7)–(8). At each Newton iterationk for (7)–(8), the linear subproblem

(also known as the KKT system) takes the form

[
W A

AT

][
d

dλ

]
=−

[
∇xL

c

]
(14)

where:

d = xk+1−xk ∈ X
dλ = λk+1−λk ∈ C
W = ∇2

xxL(xk,λk) ∈ X |X
A = ∇c(xk) ∈ X |C
c = c(xk) ∈ C .

The Newton matrix in (14) is known as the KKT matrix. By substitutingdλ = λk+1−λk into (14)

and simplifying, this linear system becomes equivalent to the optimality conditions of the following

QP.

min gTd+ 1/2dTWd (15)

s.t. ATd+c = 0 (16)

where:

g = ∇ f (xk) ∈ X .

11

The advantage of the QP formulation over the Newton linear system formulation is that in-

equality constraints can be directly added to the QP and a relaxation can be defined which yields

the following QP.

min gTd+ 1/2dTWd+M(η) (17)

s.t. ATd+(1−η)c = 0 (18)

xL−xk ≤ d≤ xU −xk (19)

0≤ η≤ 1 (20)

where:

M(η) ∈ IR → IR .

Near the solution of the NLP, the set of optimal active constraints for (17)–(20) will be the same

as the optimal active-set for the NLP in (1)–(3) [?, Theorem 18.1].

The relaxation of the QP shown in (17)–(20) is only one form of a relaxation but has some

essential properties. For example, the solutionη = 1 andd = 0 is always feasible by construction.

However, the solutionη = 1 andd = 0 is of little practical use since it results in zero steps. The

penalty functionM(η) is either linear or quadratic where if∂M(η)
∂η |η=0 is sufficiently large then an

unrelaxed solution (i.e.η = 0) will be obtained if a feasible region for the original QP exists. For

example, the penalty term may take a form such asM(η) = ηM̃ or M(η) = (η + 1/2η2)M̃ where

M̃ is a large constant often called “big M”. The default QP solver in MOOCHO, QPSchur [???], is

careful not to allow the ill-conditioning associated with̃M to impact the solution unless it is needed

for an infeasible QP.

Once a new estimate of the solution (xk+1, λk+1, νk+1) is computed, the error in the optimality

conditions (7)–(9) is checked. If these KKT errors are within some specified tolerance, the algorithm

is terminated with the optimal solution. If the KKT error is too large, the NLP functions and

gradients are then computed at the new pointxk+1 and another QP subproblem (17)–(20) is solved

which generates another stepd and so on. This algorithm is continued until a solution is found or

the algorithm runs into trouble (there can be many causes for algorithm failure), or it is prematurely

terminated because it is taking too long (i.e. maxumum number of iterations or maximum runtime

is exceeded).

The iterates generated fromxk+1 = xk +d are generally only guaranteed to converge to a local

12

solution to the first-order KKT conditions when close to the solution. Therefore, globalization meth-

ods are used to insure (given a few, sometimes strong, assumptions are satisfied) the SQP algorithm

will converge to a local solution from remote starting points. One popular class of globalization

methods are line search methods. In a line search method, once the stepd is computed from the

QP subproblem, a line search procedure is used to find a step lengthα such thatxk+1 = xk + αd

givessufficient reductionin the value of amerit functionφ(xk+1) < φ(xk). A merit function is used

to balance a trade-off between minimizing the objective functionf (x) and reducing the error in the

constraintsc(x). A commonly used merit function is thè1 (21) whereµ is a penalty parameter that

is adjusted to insure descent along the SQP stepxk +αd for α > 0.

φ`1(x) = f (x)+µ||c(x)||1 (21)

An alternative line search based on a “Filter” has also been implemented which generally per-

forms better and does not require the maintenance of a penalty parameterµ. Other globalization

methods such as trust region (using a merit function or the filter) can also be applied to SQP but no

trust region method is currently implemented in MOOCHO.

Because SQP is essentially equivalent to applying Newton’s method to the optimality condi-

tions, it can be shown to be quadratically convergent near the solution of the NLP [?]. It is this fast

rate of convergence that makes SQP the method of choice for many applications. However, there are

many theoretical and practical details that need to be considered. One difficulty is that in order to

achieve quadratic convergence the exact Hessian of the LagrangianW is needed, which requires ex-

act second-order information∇2 f (x) and∇2c j(x), j = 1. . .m. For many NLP applications, second

derivatives are not readily available and it is too expensive and/or inaccurate to compute them using

finite differences. Other difficulties with SQP include how to deal with an indefinite producted Hes-

sian. Also, for large problems, the full QP subproblem in (17)–(20) can be extremely expensive to

solve directly. These and other difficulties have motivated the research of large-scale decomposition

methods for SQP. One class of these methods is reduced-space (or reduced Hessian) SQP, or rSQP

for short.

2.3 Reduced-Space Successive Quadratic Programming (rSQP)

In a reduced-space SQP (rSQP) method, the full-space QP subproblem (17)–(20) is decomposed

into two smaller subproblems that, in many cases, are easier to solve. To see how this is done,

13

first a null-space decomposition [?, Section 18.3] is computed for some linearly independent set of

the linearized equality constraintsAd ∈ X |Cd wherecd(x) ∈ Cd ∈ IR r are the decomposed and

cu(x) ∈ Cu ∈ IR (m−r) are the undecomposed equality constraints and

c(x) =

[
cd(x)
cu(x)

]
∈ Cd×Cu =⇒ ∇c(xk) =

[
∇cd(xk) ∇cu(xk)

]
=

[
Ad Au

]
∈ X |(Cd×Cu).

(22)

Above, the vector spaceC = Cd×Cu denotes a blocked vector space (also known as a product space)

with a dimension which is the sum of the constituent vector spaces|C |= |Cd|+ |Cu|= r +(m− r) =
m. This decomposition is defined by a null-space linear operatorZ and a linear operatorY with the

following properties:

Z ∈ X |Z s.t.(Ad)TZ = 0

Y ∈ X |Y s.t.
[

Y Z
]

is nonsingular
(23)

where:

Z ⊆ IR (n−r)

Y ⊆ IR r .

It is important to distinguish the vector spacesZ andY from the the linear operatorsZ and

Y. The null-space linear operatorZ ∈ X |Z is a linear operator that maps vectors from the space

u ∈ Z to vectors in the space of the unknownsv = Zu ∈ X . The linear operatorY ∈ X |Y is a

linear operator that maps vectors from the spaceu ∈ Y to vectors in the space of the unknowns

v = Yu∈ X .

In many presentations of reduced-space SQP, the linear operatorY is referred to as the “range-

space” linear operator since several popular choices of this linear operator form a basis for the range

space ofAd. However, note that the linear operatorY need not be a true basis linear operator for

the range-space ofAd in order to satisfy the nonsingularity property in (23). For this reason, here

the linear operatorY will be referred to as the “quasi-range-space” linear operator to make this

distinction.

By using (23), the search directiond can be broken down intod = (1−η)Y py + Zpz, where

py ∈ Y and pz ∈ Z are the known as the quasi-normal (or quasi-range space) and tangential (or

null space) steps respectively. By substitutingd = (1−η)Y py + Zpz into (17)–(20) we obtain the

14

quasi-normal (24) and tangential (25)–(27) subproblems. In (25),ζ ≤ 1 is a damping parameter

which can be used to insure descent of the merit functionφ(xk+1 +αd).

Quasi-Normal (Quasi-Range-Space) Subproblem

py =−R−1cd ∈ Y (24)

where:R≡ [(Ad)TY] ∈ Cd|Y (nonsingular via (23)).

Tangential (Null-Space) Subproblem (Relaxed)

min (gr +ζw)T pz+ 1/2pT
z [ZTWZ]pz+M(η) (25)

s.t. Uzpz+(1−η)u = 0 (26)

bL ≤ Zpz− (Y py)η≤ bU (27)

where:

gr ≡ ZTg ∈ Z
w≡ ZTWY py ∈ Z
ζ ∈ IR

Uz≡ [(Au)TZ] ∈ Cu|Z
Uy ≡ [(Au)TY] ∈ Cu|Y
u≡Uypy +cu ∈ Cu

bL ≡ xL−xk−Y py ∈ X
bU ≡ xU −xk−Y py ∈ X .

By using this decomposition, the Lagrange multipliersλd for the decomposed equality con-

straints ((Ad)Td+cd = 0) do not need to be computed in order to produce stepsd = (1−η)Y py +
Zpz. However, these multipliers can be used to determine the penalty parameterµ for the merit func-

tion [?, page 544] or to compute the Lagrangian function. Alternatively, a multiplier free method for

computingµhas been developed and tested with good results [?]. In any case, it is useful to compute

these multipliers at the solution of the NLP since they give the sensitivity of the objective function

15

to those constraints [?, page 436]. An expression for computingλd can be derived by applying (23)

to YT∇L(x,λ,ν) = 0 to yield

λd =−R−T (
YT(g+ν)+UT

y λu
) ∈ Cd. (28)

There are many details that need to be worked out in order to implement an rSQP algorithm

and there are opportunities for a lot of variability. There are some significant decisions that need

to be made such as how to compute the null-space decomposition that defines the matricesZ, Y,

R, Uz andUy; and how the reduced HessianZTWZ and the cross termw in (25) are calculated (or

approximated).

There are several different ways to compute decomposition matricesZ andY that satisfy (23) [?].

For small-scale rSQP, an orthonormalZ andY (ZTY = 0, ZTZ = I , YTY = I) can be computed using

a QR factorization ofAd [?]. This decomposition gives rise to rSQP algorithms with many desirable

properties. However, using a QR factorization whenAd is of very large dimension is prohibitively

expensive. MOOCHO currently does not implement a orthonormal QR decomposition but one can

be added if needed at some point. Other choices forZ andY have been investigated that are more

appropriate for large-scale rSQP. Methods that are more computationally tractable are based on

a variable-reduction decomposition [?]. In a variable-reduction decomposition, the variables are

partitioned into dependentxD and independentxI sets

xD ∈ XD (29)

xI ∈ XI (30)

x =

[
xD

xI

]
∈ XD×XI (31)

(32)

where:

XD ⊆ IR r

XI ⊆ IRn−r

such that the Jacobian of the constraintsAT is partitioned as shown in (33) whereC is a square,

nonsingular linear operator known as the basis matrix. The variablesxD andxI are also called the

16

state and design (or controls) variables [?] in some contexts or the basic and nonbasic variables [?]

in others. What is important about this partitioning of variables is that thexD variables define the

selection of the basis matrixC, nothing more. Some types of optimization algorithms give more

significance to this partitioning of variables (for example, in MINOS [?] the basic variables are also

variables that are not at an active bound) however no extra significance can be attributed here.

This basis selection is used to define a variable-reduction null-space matrixZ in (34) which also

determinesUz in (35).

Variable-Reduction Partitioning

AT =

[
(Ad)T

(Au)T

]
=

[
C N

E F

]
(33)

where:

C ∈ Cd|XD (nonsingular)

N ∈ Cd|XI

E ∈ Cu|XD

F ∈ Cu|XI .

Variable-Reduction Null-Space Matrix

Z ≡
[
−C−1N

I

]
(34)

Uz = F−E C−1N (35)

There are many choices for the quasi-range-space matrixY that satisfy (23). Two relatively

computationally inexpensive choices are the coordinate and orthogonal decompositions shown be-

low.

Coordinate Variable-Reduction Null-Space Decomposition

17

Y ≡
[

I

0

]
(36)

R = C (37)

Uy = E (38)

Orthogonal Variable-Reduction Null-Space Decomposition

Y ≡
[

I

NTC−T

]
(39)

R = C(I +C−1NNTC−T) (40)

Uy = E−FNTC−T (41)

The orthogonal decomposition (ZTY = 0, ZTZ 6= I , YTY 6= I) defined in (34)–(35) and (39)–(41)

is more numerically stable than the coordinate decomposition defined in (34)–(35) and (36)–(38)

and has other desirable properties in the context of rSQP [?].

Solutions with linear systems withR in (40) are solved through the formula

R−1 = (I −DS−1 DT)C−1 (42)

whereD = −C−1N ∈ XD|XI andS= I +DTD ∈ XI |XI are explicitly computed, and the symmetric

positive definite matrixS is factored using a dense Cholesky method. Therefore, applyingR−1 only

requires a solve with the basis matrixC and applying the factors ofS. However, thenI linear solves

needed to formD = −C−1N and theO((n− r)2r) dense linear algebra required to computeDTD

can dominate the cost of the algorithm for larger(n− r).

For larger(n−r) if adjoint solves withCT are available, the coordinate decomposition (ZTY 6= 0,

ZTZ 6= I , YTY 6= I) defined in (34)–(35) and (36)–(38) is preferred because it is cheaper but the

downside is that it is also more susceptible to problems associated with a poor selection of dependent

variables and ill-conditioning in the basis matrixC that can result in greatly degraded performance

and even failure of an rSQP algorithm. See the MOOCHO optionquasi range space matrix in

Section?? for selecting between the orthogonal and the coordinate decompositions.

It is also important to note that MOOCHO can be used to solve nonequality-constrained op-

timization problems (m= 0) and square nonlinear equations (m = n). A nonequality-constrained

18

optimization problem is handled by usingZ = I andY = {empty}. A square nonlinear problem is

handled usingZ = {empty} andY = I . Simpler algorithms are also configured in these two cases.

Another important decision is how to compute the reduced HessianZTWZ. For many NLPs,

second derivative information is not available to compute the Hessian of the LagrangianW di-

rectly. In these cases, first derivative information can be used to approximate the reduced Hessian

B≈ ZTWZ using quasi-Newton methods (e.g. BFGS) [?]. When (n− r) is small,B is small and

cheap to update. Under the proper conditions the resulting quasi-Newton, rSQP algorithm has a

superlinear rate of local convergence (even usingw = 0 in (25)) [?]. When(n− r) is large, limited-

memory quasi-Newton methods can be used, but the price one pays is in only being able to achieve

a linear rate of convergence (with a small rate constant hopefully). For some classes of NLPs,

good approximations of the HessianW are available and may have specialized properties (i.e. struc-

ture) that makes computing the exact reduced HessianB = ZTWZcomputationally feasible (i.e. see

NMPC in [?]). See the optionsexact reduced hessian andquasi newton in Section??. Other

options include solving for system with the exact reduced HessianB = ZTWZ iteratively which

only requires matrix-vector products withW which can be computed efficiently using automatic

differentiation (for instance) in some cases [?].

In addition to variations that affect the convergence behavior of the rSQP algorithm, such as

null-space decompositions, approximations used for the reduced Hessian and many different types

of merit functions and globalization methods, there are also many different implementation options.

For example, linear systems such as (24) can be solved using direct or iterative solvers and the

reduced QP subproblem in (25)–(27) can be solved using a variety of methods (active set vs. interior

point) and software [?].

2.4 General Inequalities, Slack Variables and Basis Permutations

Up to this point, only simple variable bounds in (3) have been considered and the SQP and rSQP

algorithms have been presented in this context. However, the actual underlying NLP may include

general inequalities and take the form

min f̆ (x̆) (43)

s.t. c̆(x̆) = 0 (44)

h̆L ≤ h̆(x̆)≤ h̆U (45)

x̆L ≤ x̆≤ x̆U (46)

19

where:

x̆, x̆L, x̆U ∈ X̆
f̆ (x) : X̆ → IR

c̆(x) : X̆ → C̆
h̆(x) : X̆ → H̆
h̆L, h̆L ∈ H̆
X̆ ∈ IR n̆

C̆ ∈ IR m̆

H̆ ∈ IR m̆I .

NLPs with general inequalities are converted into the standard form by the addition of slack

variabless̆ (see (50)). After the addition of the slack variables, the concatenated variables and

constraints are then permuted (using permutation matricesQx andQc) according to the current basis

selection into the ordering in (1)–(3). The exact mapping from (43)–(46) to (1)–(3) is

x = Qx

[
x̆

s̆

]
(47)

xL = Qx

[
x̆L

h̆L

]
(48)

xU = Qx

[
x̆u

h̆u

]
(49)

c(x) = Qc

[
c̆(x̆)

h̆(x̆)− s̆

]
. (50)

Here we consider the implications of the above transformation in the context of rSQP algo-

rithms.

Note if Qx = I andQc = I that the matrix∇c takes the form

∇c =

[
∇c̆ ∇h̆

−I

]
(51)

One question to ask is how the Lagrange multipliers for the original constraints can be extracted

from the optimal solution(x,λ,ν) that satisfies the optimality conditions in (7)–(13)? First, consider

the linear dependence of gradients optimality condition for the NLP formulation in (43)–(46)

∇x̆L̆(x̆∗, λ̆∗, λ̆I
∗
, ν̆∗) = ∇ f̆ (x̆∗)+∇c̆(x̆∗)λ̆∗+∇h̆(x̆∗)λ̆I

∗
+ ν̆∗ = 0. (52)

20

To see how the Lagrange multiplesλ∗ andν∗ can be used to computeλ̆∗, λ̆I
∗

andν̆∗ one simply

has to substitute (47) and (50) withQx = I andQc = I , for instance, into (7) and expand as follows

∇xL(x,λ,ν) = ∇ f +∇cλ+ν

=

[
∇ f̆

0

]
+

[
∇c̆ ∇h̆

−I

][
λc̆

λh̆

]
+

[
νx̆

νs̆

]

=

[
∇ f̆ +∇c̆λc̆ +∇h̆λh̆ +νx̆

−λh̆ +νs̆

]
. (53)

By comparing (52) and (53) it is clear that the mapping isλ̆ = λc̆, λ̆I = λh̆ = νs̆ and ν̆ = νx̆. For

arbitrary Qx and Qc it is also easy to perform the mapping of the solution. What is interesting

about (53) is that it says that for general inequalitiesh̆ j(x̆) that are not active at the solution (i.e.

(νs̆)(j) = 0), the Lagrange multiplier for the converted equality constraint(λh̆)(j) will be zero. This

means that these converted inequalities can be eliminated from the problem and not impact the

solution (which is what one would have expected). Zero multiplier values means that constraints

will not impact the optimality conditions or the Hessian of the Lagrangian.

The basis selection shown in (22) and (31) is determined by the permutation matricesQx and

Qc and these permutation matrices can be partitioned as

Qx =

[
QxD

QxI

]
(54)

Qc =

[
QcD

QcU

]
. (55)

A valid basis selection can always be determined by simply including all of the slackss̆ in the

full basis and then finding a sub-basis for∇c̆. To show how this can be done, suppose that∇c̆

is full column rank and the permutation matrix(Q̆x)T =
[

(Q̆xD)T (Q̆xI)T
]

selects a basis̆C =

(∇c̆)T(Q̆xD)T . Then the basis selection for the transformed NLP (withQc = I)

Qx =




Q̆xD

I

Q̆xI


 (56)

C =

[
(Q̆xD∇c̆)T

(Q̆xD∇h̆)T −I

]
(57)

N =

[
(Q̆xI∇c̆)T

(Q̆xI∇h̆)T

]
(58)

21

could always be used regardless of the properties or implementation of∇h̆.

Notice that basis matrix in (57) is lower block triangular with non-singular blocks on the diag-

onal. It is therefore straightforward to solve for linear systems with this basis matrix. In fact, the

direct sensitivity matrixD = C−1N takes the form

D =−
[

(Q̆xD∇c̆)−T(Q̆xI∇c̆)T

(Q̆xD∇h̆)T(Q̆xD∇c̆)−T(Q̆xI∇c̆)T − (Q̆xI∇h̆)T

]
. (59)

Note that if the forward sensitivities(Q̆xD∇c̆)−T(Q̆xI∇c̆)T are computed up front then this is little

extra cost in forming this decomposition. The structure of (59) is significant in the context of

active-set QP solvers that solve the reduced QP subproblem in (25)–(27) using a variable-reduction

null-space decomposition. When an implicit adjoint method is used, a row ofD corresponding to

a general inequality constraint only has to be computed if the slack for the constraint is at a bound.

Also note that the above transformation does not increase the total number of degrees of freedom of

the NLP sincen−m= n̆− m̆. All of this means that adding general inequalities to a NLP imparts

little extra cost for an active-set rSQP algorithm if the forward/direct sensitivity method is used or

if these constraints are not active when using the adjoint method.

For reasons of stability and algorithm efficiency, it may be desirable to keep at least some of the

slack variables out of the basis and this can be accommodated also but is more complex to describe.

Most of the steps in an SQP algorithm do not need to know that there are general inequalities in

the underlying NLP formulation but some steps do (i.e. globalization methods and basis selection).

Therefore, those steps in an SQP algorithm that need access to this information are allowed more

detailed access of the underlying NLP in a limited manner.

22

3 Overview of Software Architecture, Solvers, and Examples

4 Defining Optimization Problems

4.1 Defining general serial NLPs with explicit derivative entries

4.2 Defining simulation-constrained parallel NLPs through Thyra

5 Solving Optimization Problems with MOOCHO

5.1 Algorithm configurations for MOOCHO

5.2 Running MOOCHO algorithms

5.3 Summary

23

